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Psychoacoustics and Low Bit-Rate Digital Audio Coding

Recent advancements in low bit-rate audio coding technology are based on application of
advanced human auditory system models and the underlying perceptual limitations of
the ear. The best low bit-rate audio coders deliver sound quality comparable to digital
audio compact disc (CD) at a data rate of 128 kbits/second/channel --about one-fifth the
data rate of CD. Digital signal processing (DSP) and custom large scale integrated (LSI)
circuit devices provide the required computational horsepower and economical means of
coder implementation for professional and consumer applications in telecommunications,
broadcasting, high-definition television, optical and magnetic recording, and computer
multimedia products.

A primary goal in development of low bit-rate audio coders is to provide for cost
§$ effective transmission and storage of high-quality digital audio. In contrast to speech
coding techniques where intelligibility is the key goal and assumptions can made
regarding the limited variety of sounds emanating from the vocal tract, low bit-rate audio
coders must be designed to work with an unlimited variety of natural and synthesized
sounds, with no loss of fidelity. The common element in perception of coded sounds is
the human ear, and low bit-rate audio coders are designed to reduce data rate by
exploiting perceptual limitations in the human auditory response. Despite the
complexities involved and incomplete knowledge as to exactly how the ear responds to
complex audio signals, audio coder developers in the US, Europe and Japan have recently
made substantial gains in development of mathematical models which characterize
auditory limitations and provide the foundation for advanced low bit-rate audio coder

design.

The critical-band concept [H. Fletcher, 1940] and the psychoacoustic principles of
auditory masking are fundamental to design of effective low bit-rate audio coders.
Auditory masking describes the phenomenon whereby a loud signal tends to “mask” or
hide the presence of other quiet signals nearby in frequency. Masking is a consequence of
an increase in the ear’s threshold of perception in the frequency range of the loud signal
which leaves the ear “deaf” to quieter signals at or near the same frequency.

Results of experiments at low signal levels reveal that a quiet signal which 1s masked by a
louder tone nearby in frequency remains inaudible until the frequency spacing between
them exceeds a certain threshold bandwidth, or so called critical-band spacing.

The critical-band model of the ear as a parallel bank of narrow band filters was developed
as a means of conceptualizing measured variations in threshold bandwidth or “masking
selectivity” as a function of frequency. In the model, notional critical-band filters are
approximately 100 Hz in width below 500 Hz, and are of constant fractional bandwidth,

1.e. one-fifth of center frequency, above 500 Hz. This model serves as a measure of the



minimum frequency selectivity required to take maximum advantage of the ear's masking
characteristics. The important principle to audio coder developers is that the ear functions
much like a 25 band real-time spectrum analyzer with bandwidths and sensitivity
thresholds that vary somewhat over the 20 Hz to 20 kHz frequency range. Single tone
masking experiments indicate that masking effects are minimal within the first 30 dB
above the threshold of hearing, i.e. near the quietest sound levels the ear is capable of
perceiving. At progressively louder levels, however, masking occurs over a broader
frequency range encompassing an increasing number of critical bands, particularly in the

frequency range above the masking signal.

Although the body of published data on masking is derived largely from experiments
involving sinewaves and narrow-band noise, these data represent applicable upper limits
on the thresholds of audibility with more complex audio signals, and are therefore
relevant to audio coder design. Single-tone masking curves are well documented in the
literature and are beyond the scope of this overview. However, it is useful to identify
masking trends for audio signals with predominantly low, middle or high frequency
content. Loud, low frequency signals effectively mask the presence of quieter low
frequency signals and provide a masking effect which broadens into the mid-frequency
range as signal loudness increases. Loud, mid-frequency signals best mask quieter mid
and upper-frequency signals; however, this masking effect falls off rapidly just below the
frequency range of the masking signal. Loud high-frequency signals effectively mask
quieter high frequency signals, but provide very little masking of middle frequencies and
no masking at low frequencies. The exact degree of masking is a complex function of the
amplitude and distribution of the frequency components of the audio signal, and much

remains to be learned in quantifying these complex masking effects.

An additional form of masking that must be considered in optimized low bit-rate audio
coder design is that provided by transient signals. Under steady state signal conditions the
frequency resolution of the ear is excellent, but it takes the ear a finite time to “tune in” to
signal changes, thus implying inherent limitations in time resolution. However, actual
measurements in the key time interval just prior to the onset of high level transient test
signals confirm time resolution of under 5 milliseconds. Interestingly, masking of quieter
signals can occur before, during and after the occurrence of a transient signal.
Pre-temporal masking, i.e. that which occurs just prior to the transient, is strongest up to
10 milliseconds before the transient. The masking effect understandably, is strongest

during the transient, and falls off over a period of 50-200 milliseconds thereafter.

The fundamental process of low bit-rate coding includes generation of a

frequency-domain representation of the audio signal, variable quantization of the signal's



frequency components to a reduced accuracy based on an auditory masking model,
allocation of bits to meet the varying demands of the quantizer, and re-synthesis of an
approximation of the original time-domain waveform following transmission or storage
of the coded data. Generation of the frequency-domain representation of the audio
signal 1s accomplished through use of a multi-frequency band filter bank. Two different
frequency division techniques, one based on the discrete Fourier transform [1], and one
based on polyphase digital filters [2] have emerged as popular methods. DSP and LSI
technology are employed to implement the filter bank, frequency analysis, masking

threshold calculation, quantizer and bit-allocation functions.

Audio signals consist of nearly stationary signals and transients changing rapidly with
time. Signals which change slowly in time are best coded using a filter bank with a high
degree of frequency selectivity such that the spectrum of coding errors may be confined
to the spectral region of the signal, and masking may be exploited to best advantage.
Transient signals, however, are best coded using a filter bank which has time resolution
equal that of the ear, thus avoiding coding errors which spread in time beyond the
audibility limits set by the ear's temporal masking characteristics. As excellent frequency
selectivity and short time resolution are mutually exclusive requirements, filter bank
design can involve a) a compromise between time and frequency resolution with
sufficient bit-rate allocated to meet temporal and spectral masking constraints, or b) a
filter bank with time-varying optimization for either time or frequency resolution
depending on the characteristics of the signal to be coded. Both techniques are employed

in low bit-rate audio coders.

A conceptual block diagram of a multi-frequency band low data-rate audio coder is
llustrated in Figure 1. A sampled and quantized time domain input signal consisting of
low, middle and high frequency components A, B and C is converted to a
frequency-domain representation using an appropriate filter bank technique with
critical-band frequency resolution. The frequency-domain representation of the signal is
shown in Figure 1a. Once the frequency components of the audio signal are identified, an
estimate of the masking thresholds is made on a band-by-band basis by direct calculation,
or by comparison with a pre-programmed model of the ear. Having established the
masking thresholds based on the loudest signal components present in each of the
frequency bands, other nearby signal components are analyzed to determine whether the
loudest signals provide sufficient masking to render quieter signals within that same
critical band inaudible. Once this determination is made, the bit-rate reduction portion of
the process can be completed. This involves quantizing the frequency components in each
of the individual filter bands with sufficient accuracy to keep the quantization noise just

below the calculated in-band masking thresholds, and amplitude scaling of the signals to



normalize their peak levels to make optimum use of digital signal processor dynamic
range. Note that although a low bit-rate representation of the signal has been created, a
wideband noise component is introduced as a result of quantizing the frequency-domain
signals. The crosshatched areas in Figure 1b represent the quantization noise added to the
signal components, just below the in-band masking thresholds. Based on masking criteria
discussed earlier, this wideband noise component would not be effectively masked by the
signal components if no further action was taken, and the desired high fidelity would not
be achieved. However, an additional process takes place in the decoder after transmission
or storage of the coded representation of the signal, where an identical filter bank to that
used in the encoder is employed. Quantized frequency-domain data is received by the
decoder and passed through the filter bank. This re-filtering process leaves the frequency
components of the signal intact, while tightly constraining the unwanted
quantizer-introduced noise to a narrow frequency range below the masking threshold as
shown in Figure 1c. As long as filter bank frequency selectivity and out-of-band signal
rejection are sufficient, masking thresholds may be conservatively applied with sufficient
bit rate allocated to keep quantizer noise below audible limits, and the reconstructed time
waveform at the decoder output will sound subjectively equivalent to that of the input

signal.

The design of high-quality low bit-rate audio coders involves a trade-off between the
degree of bit rate reduction and subjective audio quality. Systems currently available
achieve near-perceptual transparency for 20 Hz to 20 kHz bandwidth audio signals at a
data rate of 128 kbits/second/channel. Coder development work continues towards total

transparency at current data rates, and equivalent sound quality at lower data rates.

Steven E. Forshay
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